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1
I
|
‘ ) FOREWORD ‘
|

. For the past twenty-four years, the Naval Surface Weapouns Center has been )
i involved in a research and consultirg effort for both the Energy Research and ‘
1 Development Administration and the Nuclear Regulatory Commission concerned

' with the study of reactor vessel response to hypothetical core accidents and i
; other types of dynamic loading events. As part of this effort, analyses of jet
: forces produced by ruptured steam process pipes on neighboring walls of reactor
, buildings have been performed. This report presents the computed results for

, impact loads from the ruptured process pipe on the inner wall of a surrounding ‘
! concentric guard pipe for geometries cornsistent with reactor plant design

guidelines.

et i i stll

| This task was performed under Technical Assistance Contract "Guard Pipe,
: Process Pipe Interaction," FIN #B6467, Interagency Agreement No. NRC-03-78-148,
) monitored by J. J. Burns, Division of Systems Safety, NRR, Nuclear Regulatory

. Commission.
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CHAPTIR 1
INTRODUCTION

1.1 BACKGROUND

Since 1956 the Naval Surface Weapnns Center has been involved in a research
and consulting effort for both the Energy Research and Development Administration
and the Nuclear Regulatory Commission (NRC) concerned with the study of reactor
vessel response to hypothetical core acciderts and other types of dynamic
loading events. In an earlier effort, NSWC providec to NRC preliminary calcula-
tions of pressure loads produced on neighboring walls by steam pipe runtures.
The task reported herein is a continuation of these calculations for the
purpose of determining the pressure loads very close-in to the site of steam
pipe rupture. Specifically, a series of hydrocode calculations were done to
determine the fluid flow/pressure fields in regions bounded by an inner steam
pipe and an outer guard pipe following simulated ruptures of the high-pressure
inner steam pipe.

1.2 PROBLEM STATEMENT

A process pipe, filled with saturated steam at 2.3 MPa (1200 psia), was
assumed to rupture instantaneously in either the circumferential or longitudinal
direction (See Figure 1). The steam flowed out from the rupture, driving
ambient air ahead of it, and impacted the inside surface of a guard pipe which
surrounded the process pipe. The desired result was the pressure distribution
along the guard pipe.

The analysis was performed in two phases. In the first phase, the proper
equation of state for high-pressure saturated steam was evaluated, the appropriate
finite difference grid scale for the problem geometry and flow conditions was
determined, and a particular hydrocode for performing the calculations was
selected. The second phase of the task determined the time-dependent internal
pressure distribution on the ¢uard pipe as a function of (a) direction of the
pipe rupture (circumferentiai or longitudinal), (b) width of the pipe rupture,
and (c) separation distance or gap between the process and guard pipes. The
parameters for the seventeen process/guard pipe configurations that were
computed are listed in Table |l.

i-ﬁ;.::., ..xJ
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TAsLE |
KUN PARAMETERD

METRLC UNITS=--
PROC.  rPrU(+ GUARD SPACE

. . TUULI PIPL PIPE PFIPE BETwe. “4REAK
* RUN CALC SkkR PO THICRe Uelis  leDe PIMES WwlpThe
- NO o NO., Flue(MPA)  (MM) (M) (M) (MM) (MM)
1 7879 13 Be2T4 5048 el 1,016 H)eHd 12.7 L
1 * 2 7876 13 B.274 50¢8 04914 1,016 508 127 C
i 3 7873 12 8.274 508 Uevl4 1o0le 508 50.H8 L
5 4 7870 11 H.274 S0ed Ua914 la0lo 5068 50ets C
i

7840 13 He2T74 Yl Qevle lelid 10146 12«7
7877 13 8.2l4 5048 0Oeyle lellB 10160 127
7874 12 Bel T4 508 Devla lelll 10leb alet
7871 11 Be274 5S0ev UaYl4 1118 101le® 50e8

crocr

A
- . 1 f
a ~No U

|

s

!, 9 Tbul 13 d.d7“ 908 (VI B le219 19¢ 4 12.7 L

] Lo 7878 13 .76 59048 04914 Le2l9 1d2.4 121 C

: 11 7875 1¢ Be2Ts S0en UVevle L1219 15204 SOer L
12 7817¢ ll Ood?“ 504 Uew]le loe2lY 19«4 w0eH C

R 13 782 14 6.895 7.3 048173 1.0Bo 13647 308 L
la 7883 14 b.g9d 3T.3 Uesls 14086 13647 50e8 C
) TeB4 14 o.6lo 373 Uenls3 leHb 1o6e7 s0e8 C

le 7489 1& HRelTH 508 VeY]lé Va4 1607 S0l L
17 788K 12 d.274 50.8 eYl4 Us96D 2Du4 50.8 L

ENGLLISH UNITS=-
PROC. PHRUC . GUAKYU  SHACE

TUULI PIPC PlFE  PIFE HE'Us  oKEAR i
KUN CALC Skt PO THICKe Uelis  TaUe PIFES wlDTHH I
VOe  NUs Flue(PsIA) (IN) (iny (1IN CAn) (IN) Y

1 7&79 13 1200 2.“ 3*\‘ ‘00. fou QQb L
14 7876 13 1200 24V 3n. 4 2ol 0.5 C i
3 7873 1¢  1lev0 2oV dhe 60 col 2.0 L L
[ 768170 ll 1200 2el) Jh e 40 e el 20 C :
]
o 75”0 15 ldUU 2el . G4 ‘4.0 0.: L (:i
6 7877 13 1200 2ol 36 AN 4e0 Ueb L :
7 7874 12 1200 240 She G4 4ol 2.0 L ?
8 7871 11 1e00 240 3be b v 2.0 C y
9 7851 13 1800 el b 4t oel 0.5 L g
1v 7878 13 ldOU cel 3mhe 48 6.0 005 Q y
. il 7871% 12 1200 2e0 36 4H. 60 2.0 L i
ie 872 11 1200 240 3h. 48, 6e0 2.0 L
13 7882 16 1000 leal 3 4coTD 9e3d 2.0 L
1o 7R3 14 1000 lea? 32 421D DHeuotht 2.0 C
iy 7884 & leob lete! 34 4z2.19 Hedd 2.0 C
ib TUHY 1c lﬁUO 2eV Ik Ale Und 2.0 L
i7 THHH e 1200 Ze0 KELYS Rl 1e0 2.0 L
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f CHAPTER 2
| ANALYTICAL SOLUTIONS

For a free compressible jet expanding to ambient pressure, the total jet
thrust for an ideal gas as given by Reference 1 (slightly niodified) is

..e®

! T/Ag = C,Py - P,

= Jet thrust = Total force on a large normally-impacted plate

! A_ = Effective area of process pipe break 5

- _—f""-""‘ 1’77“,""’_" TR e s

. = Pipe reservoir pressure
. P = Ambient pressure
¢y = (1 + )@/ e 1)/ ()

y = Specific heat ratio

B D L TP p—y AR i

-

The coefficient C1 is a weak function of -, being 1.255 for y = 1.3 and 1.229
for y = 1.1058.

This solution, or any other such simple solution, is not adequate here
because

(1) The gap between the pipes is relatively narrow in comparison with the
pipe dimensions, and backpressure on the outside ¢f the process pipe must be
accounted for in a force balance;

(2) The non-uniform filling of the gap between the process and guard
pipes with steam and compressed air makes P_ i11-defined;

ittt A et nnam e

(3) The nozzle discharge coefficient is not known a priori to obtain the
effective value of Ae for the break in the process pipe;

(4) Time-dependent pressures must be considered here initially to obtain
the early-on transient airshock/steam shock contributicns to the guard pipe
Toading;

1Moody. F. J., "Prediction of Blowdown Thrust and Jet Forces," ASME Paper 69-HT-31,
ASME-AIChE Heat Transfer Conference, Minneapolis, Minn., Aua 1969.

e e TN SV —rlint
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(5) The distribution of pressure along the guard pipe inside surface,

not just the total force, is needed for future structural response calculations.

The total force calculations are useful, however, for comparing with
integrated results obtained from the hydrocode computations. These comparisons

are discussed later.

11
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CHAPTER 3
HYDROCODE SOLUTIONS

This was a problem well suited for an Eulerian (rather than Lagrangean)
hydrocode since there is much distortion in the flow. In the initial phase
of the analysis two hydrocodes were used, TUULI and CSQ.

TUULI* is a two-dimensional Eulerian hydrocode, written in 1975 at NSWC
by D. Lehto. Full documentation is not yet available. The code is based on
the fluid-in-cell (FLIC) method (REFERENCE 2) where the calculation is done

in four steps per time cycle:

1) The accelerations are calculated from the pressure gradients and new
nrovisional velocities are calculated (without convection).

2) The provisional velocities are used to calculate the ndV work done on
each zone; this gives provisional internal energies (still without convection).

3) The material transport (convection) is done with the provisional
velocities and energies.

4) Any adjustments ..:eded to conserve both energy and momentum are made.
Any kinetic energy correction needed for momentum conservation is taken from
(or added to) the internal energy. These adjustments are necessary because
the flow mixes dissimilar flows from adjacent zones, and both kinetic energy
and momentum cannot be conserved in a mixing process. This fourth step is
explicitly done in TUULI because internal energy is transported; it is
implicitly done in the original FLIC code because total energy is transported.

This is a trivial arbitrary choice.

TUULT handles two materials (here, steam and air) and has an option for
assigned inflow in any chosen zones (used extensively in these calculations).
The grid is composed of fixed rectangular zones. Shocks are handled by the
quadratic artificial viscosity method.

2Eentry, R. A., Martin, R. E., and Daly, B. J., "An Eulerian Differencing
Method for Unsteady Compressible Flow Problems," J. Comput. Phys. 1, pp 87-118,
1966.
*Until now, this code was called TUTTI, However, this is also the name of a Los
Alamos Scientific Laboratory equation-of-state program (J. Appl. Phys. 51 (10)
5368 (1980)). Thus, the name change: TUTTI to TUULI.

12
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CSQ is a two-dimensional Eulerian hydrocode written at the Sandia Laboratories.
’ Documentation for this code is provided in Reference 3. In this method, the
calculation is performed in two main phases:

1) The finite difference analogs of the complete two-dimensional Lagrangean
equations are solved during each time cycle.

2) At the end of the time cycle, the code rezones the mesh back to the
original configuration,

: The net result of the rezoning is an Eulerian calculation. The version of ;

g CSQ described in Reference 3 handles only two materials in any chosen zone. :
The grid is composed of fixed rectangular zones. Shocks are handled by the
quadratic artificial viscosity method.

|

{

i

|

?

L

[T' The computations were performed on a CYBER 176 at the Air Force Weapons 3
| .

|

i

Laboratory in Albuquerque, New Mexico over telephone lines from NSWC.

3.1 ZONE SIZE SELECTION ;
%

i Both TUULI and CSQ face the same limitations on available computer size !

' and cost of computer time. Care was taken to choose a calculation mesh just :
fine enough to give the desired accuracy; this was done by simply trying 3
progressively finer meshes until the overpressure loading on the guard
pipe inside wall no longer changed significantly. The final mesh selected
was 0.315 zones/mm (8 zones/in) within the charnel formed by the break after |
it was determined that reduction of the mesh size down to 0.630 zones/mm 0
(16 zones/in) produced no significant effect on the calculated flow. 5
The mesh was nonuniform and varied for each problem geometry, being fine in
the channel and near the impact area on the guard pipe and progressively
coarser with increasing distance from the region of interest.

3.2 ZONE SHAPE LIMITATION

Both hydrocodes are limited to rectangular zones. This makes the

Tongitudinal-break problem awkward, because the concentric circles needed
to represent the problem cross section would have to be made up of rectangular
steps (See Figure 2). For the longitudinal-break calculations, the pipes were
straightened out into parallel planes as shown in the figure; this is expected
to be a good approximation since the separation distances between pipes are
relatively small compared with the pipe radii for the geometries investigated
here. No problem arose in setting up the mesh with rectangular zones for the
circumferential-break calculations because all bounding surfaces could be
represented by straight lines. The computing mesh for the flat-plate
approximation for the longitudinal break shown in Figure 2 looks similar to

) the mesh for the circumferential break; however, the latter has axial symmetry.

3Thompson, S. L., "CSQ ~- A Two Dimensional hydrodynamic Program with Energy
rlow and Material Strength," Sandia Labs. SAND 74-0122, Aug 1975.
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GIJARD PIPE

7/
TRUE GEOMETRY REGION OF PLANE OF
INTEREST SYMMETRY

GUARD PIPE

l_r_r PROCESS PIPE

SLIT

b
v

ORTHOGONAL GRID APPROXIMATION (NOT USED)

SUT~  » é

"\ PLANE OF REGION GF
SYMMETRY INTEREST

FLAT-PLATE APPROXIMATION

GUARD PIPE

PROCESS PIPE

FIGURE 2. GEOMETRY FOR LONGITUDINAL BREAK
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3.3 EQUATIONS OF STATE

When the steam pressure drops as it leaves the ruptured process pipe,
condensation takes place and the resulting two-phase flow expands isentropically.
For example, the isentropic exponent for equilibrium flow (i.e., equilibrium
between the vapor and droplet phases) is 1.1058 (Table 2) for saturated steam at
8.3 MPa (1200 psia).* However, it takes a finite time for the vapor to condense
into droplets. If this relaxation were a relatively slow process with respect
to the expansion, the expanding steam would continue to behave as a pure vapor.
On the vapor side of the saturation 1ine, the adiabatic exponent is 1.2592;

a frozen flow would be expected tn maintain this exponent beyond the saturation
The actual flow would lie between these two states during the expansion

line.
process. Referring to Figure 3 (taken from Reference 5), the TI-curve is
the equilibrium flow isentrope and the ['-curve segment below the saturated

vapor curve (SV) is the frozen flow isentrope. The actual curve, nonequilibrium
flow designated ACT, for the two-phase steam mixture which takes into account
the kinetics of the relaxation/condensation process falls somewhere in between

the TI and the 1' curves as shown in the figure.

The effect of nonequilibrium flow (delay in condensation) was bounded
by performing hydrocode calculations with adiatatic exponents (y) for both
the frozen and the equilibrium flow conditicns. An ideal-gas equation of

state,
p=(Y-1)DE,

was used to give the isentrope,

Po~Y = constant,

where P is pressure, o is density, and £ is internal energy. The results.,
given in Figure 4 for a typical circumferential-break geometry, indicate
that nonequilibrium flow correctiuns to the pressure loading or the guard
pipe opposite the pipe break are negligitle. Equilibrium flow was assumed
for the rest of the hydrocode calculations.

*Steam table (Referenee 4) pressure-volume data were fitted (on a log-log
scale) with straight lines to get the adiabatic exponents given in Table 2.

4Keenan. J. H. and Keyes, F. G., Thermodynamic Properties of Steam, Including
Data for the Liquid and Solid Phases, 1lst ed., Wiley, New York, 193€.

52e1'dovich. Ya. B., and Raizer, Yu, P., Physics of Shock Waves and High
Temperature Hydrodynamic Phenomena, Volume I], ed. by W. D. Hayes and
R. F. Probstein, Academic Press, New York, 19&7.
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{
TABLE ¢ ?
SATUKATED STEAM DATA
METRIL UNITS=- \ ;
R PRESSURE (MPA) be 895 Be2Ts Bebld j
o SPECIFIC VOLUME (M3/MG) 2182 2245Y 2le56 o
: VENSTITY (MG/M3) 0.03595  0,064426 0.04644 ;
- TEMPERATURE (K) 587,94 570451 573439 1
. ENTROPY (J/KGeK) “H18, 5722, 5699,
. AUIABATIC CONSTANT ’
» ON VAPOR SIDE 1e2623 le2592 1.2777
) AUTABATIC CONSTANT
ON ¢~PHASE SIUE 1.0866 l.1058 1el06b
ENGLISH UNITS==
PRESSURE (PSIA) 1000 ievo 12=0 i
\ SPECIFIC VOLUME (FT3/LH) Qo450 VeldblY 03450 )
TI".“PtHATU."E (F) 3‘0‘0067 bb'l.f? Ylldbc d
ENTROMY (BTU/F +LB) 1o 3H9T le36b7 le30le
. i
Y
bl
%' TAadLE 3
. EXIT CONUDITIUNS AT SLIT
Be2T4& MPA (1200 PSIA) SATURATEU STEAM, GAMMA=l,.l054 .
BREAK WIDTH=50.8 MM (2 IN)e FPIFE THICKNESS=50.8 MM (¢ IN) . ;
i
VISTANCE FROM ParTICLE SUUNU MASS
MILUPLANE OF PRESSURE UENSITY  VELGCITY SHEED FLUX |
BREAK (MM) (MPA) (G/MM3) (M/%S) (M/5) (G/Me/US) é
Le6 24613 15452 6UYH 431eb 10464 ;
‘0.8 Zoblb ls.:ﬁ 60605 “Jl.’ Yebb g
(.9 deblH 15.5¢ HODY “3leYy Je%04 %
1i.1 2¢617 15.%9¢ t01.1 43l.8 Yedéy
14.3 2.606 15452 0917 4309 Yelta i
1745 24573 15.5¢ 5713.2 4lb,.¢ Bel90 -]
2U.6 24506 195.5¢ 9394H 4ccded tedle §
3.8 24403 15.5¢ 663,7 “ld.b 1.197 :
{
SONIC 27.60b 4Tc.8 4llen 1209 -
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|
|
|
|
{ + T | - ISENTROPE FOR VAPOR
I' — ISENTROPE FOR SUPERSATURATED (SUPERCOOLED) VAPOR
| SV — SATURATED VAPOR CURVE
b O - SATURATED POINT
L:‘ TI — ISENTROPE FOR EQUILIBRIUM
TWO- PHASE VAPOR - LIQUID SYSTEM
ACT — ACTUAL CURVE FOR THE VAPOR - LIQUID DROP SYSTEM
TAKING INTO ACCOUNT THE KINETICS OF CONDENSATION

]
<

1

Y

FIGURE 3. T-V DIAGRAM FOR CONDENSATION IN AN ISENTROPIC VAPOR EXPAN3ION
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- |
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o |V EQUILIBRIUM FLOW, y = 1.1058
I
! : \, = = == NONEQUILIBRIUM (FROZEN)
e v FLOW, y = 1,2692
' 2 - |
' 8.274 MPa (1200 PSIA)
| 50.8mm (2 in) CIRCUMFERENTIAL BREAK
| 50.8 mm (2 in) PIPE SPACE
|
11— I
0 L L | L L
0.1 0.2 0.3 0.4 0.5 0.6

TIME (ms)

FIGURE 4. EFFECT OF THERMODYNAMIC NONEQUILIBRIUM ON PRESSURE ON GUARD PIPE
OPPOSITE THE BREAK

18

La;&‘: PEE PPN SRS SR LI At st Bk et a5 A




NSWC TR 80-229

The air in the gap between the process and guard pipes was treated as
an ideal gas with y = 1.4, The air in the gap was initially set to an average
temperature of 422 K (3000 F) for all the hydrocode calculaticns. This value
: * was determined by performing a steady one-dimensional heat conduction analysis
; (see Reference 6, p. 37) for a steam pipe surrounded by an air gap, a guard
i pipe, and an ambient atmosphere with free convection.
L

3.4 HYDROCODE SELECTION

b TUULT and CSQ give essentially the same results, as expected. This is
b demonstrated in Figure 5 which presents the pressure versus time history from
) each code at the guard pipe surface directly opposite the circumferential break
. for Run No. 4 listed in Table 1. The small oscillations are unresolved airshock
E;. reflections between the nose of the steam jet and the guard pipe wall. They

- are considered insignificant in terms of pipe response to the pressure loads.

. P

TUULT was the hydrocode chosen for the remainder of the calculations
because the authors are more familiar with it tharn with CSQ.

I —
it

¥
e e e i

6Kre1th, F., Principles of Heat Transfer, 2nd ed., International Textbook Co.,

Scranton, Pa., 19€5. i
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[

PRESSURE(MPa)

2~ 8.274 MPa (1200 PSIA} SAT. STEAM

50.8 mm (2 in) CIRCUMFERENTIAL BREAK
PROCESS PIPE 0.D. = 0.914 m (386 in)
GUARD PIPE 1.D. = 1.016 m (40 in)

TUULI RUN T7887

LS b s ol o St e s -t

CSQRUN 3
0 | | | L | L
0 0.1 0.2 0.3 0.4 0.6 0.6 0.7
TIME {ms)

FIGURES5. TUUL! AND CSQ CODE PRESSURE VS TIME ON GUARD PIPE OPPOSITE THE BREAK
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CHAPTER 4
HYDROCODE RESULTS

The expected flow phenomena following an instantaneous break in the process
pipe (for the circumferential-break geometry) are shown in Figure 6. A
rarefaction wave recedes into the process pipe steam reservoir., A steam plume
jets from the break in the process pipe into the air gap between the process
and guard pipes. Sonic conditions are attained within the hreak and the flow
becomes choked. An airshock precedes the steam jet and a stationary shock

front (in the steam) is formed which stands off at some distance from the
guard pipe inner wall.

In section 4.1 several elements of the flow phenomena -- rarefaction wave,
sonic flow in the process pipe break, and discharge coefficient for the break --
are discussed. These elements allow & substantial simplification of the flow
field calculations. The flow internal to the process pipe need only be computed
once (with a hydrocode) for each initial steam flow condition. Following this,
truncated flow field computations are then performed for the different process/
guard pipe geometries. The truncated flow field calculation involves specifying
the steady outflow from the process pipe exit and then computing the flow field
for the intervening space between the process pipe and the guard pipe.

Section 4.2 discusses the following aspects of the flow field for the
region between the process pipe and the quard pipe:

1) The pressure loads on the guard pipe wall produced by the airshock
preceding the steam plume;

2) The transient initial pressure loads rroduced by the steam plume on
the guard pipe wall;

3) The stationary shock in the vicinity of the guard pipe wall; and

4) The maximum pressure loads on the guard pipe wall that are established
by the steady flow of the steam exiting from the process pipe break.

4.1 OUTFLOW FROM PROCESS PIPE

RAREFACTION WAVE. A rarefaction wave runs from the break into the steam in
the process pipe. For a circumferential break, this wave reflects from the pipe
axis and part of it comes tack intc the break. Figure 7 shows the guard pipe
wall reflected pressure versus time for such a calculation carried out far
enough in time to follow the prupagation cf the reflected rarefaction wave to
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FIGURE 7. EFFCCT OF AXIAL REFLECTION OF RAREFACTION WAVE 1N PROCESS PIPE
ON GUARD PIPE PRESSURE
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and into the break. The net effect on the guard pipe reflected pressure loading
is a negiigible pressure oscillation that arrives after an essentially steady
flow pattern at the guard pipe wall has been attainec. The shape of the
pressure oscillation indicated in Figure 7 rapresents the interaction of the
rarefaction wave with the stationary shock and the guard pipe wall -- the lack
of definition of this pressure oscillation is caused bty the coarse zone size
used in this computation.

SONIC FLOW IN PROCESS PIPE BREAK. Within the break, sonic flow conditions
occur at the minimum flow cross section if the downstream pressure, pq, is

P\
pd<puG+Q

where p, is the upstream (reservoir) pressure and v is the specific heat ratio
of the gas.

For a free jet, the downstream pressure is equal to the ambient pressure.
For a confined jet such as discussed here, the downstream pressure is not
defined a priori because of the pressure builcup in the confined space. This
does not present a problem for the hydrocode calculation because it automatically
simulates the correct flow, whether it is sonic or subsonic. However, if
preliminary hydrocode calculations indicate that the flow in the break remains
sonic for the duration under investigation (which turns out to be the situation
here), then considerable savings in computer costs can be made by assigning
the proper steady flow conditions at the break exit and calculating only the
flow downstream of the break for the varicus pipe spacings. The downstream
flow cannot send any signals through the sonic flow irto the process pipe.

DISCHARGE COEFFICIENT FOR PROCESS PIPE BREAK. The process pipe treak is
expected to have sharp edges. For such & nozzle," the flow contracts and
does not fill the "nozzle" cross section (Figure &). This effect is the
familiar vena contracta of incompressible flow ancd is kncwn tc occur for
compressible flow as well (Peferences 7 - 11). The area contraction

7Bean, H. S., Buckinghar, E. and Yurphy, P. S., "Discharge Coefficients of
Square-Edged Orifices for Measuring the Fiow of Air," I.B,S.J. Res. 2,
pp 561-568, 196Y.

8Stanton. T. E., "On the Flow of Gases at tigh Speeds," Proc. Roy. Soc. 111,
pp 306~339, 1926.

gperry, J. A., Jr., "Critical Flow Through Sharp-Edged Orifices," Trans. Am.
Soc. Mech. Engrs. 71, pp 757-764, 1949,

10Grace, H. P. and Lapple, C. E., "Discharge Cocfficients of Small-Diameter
Orifices and Flow Nozzles," Trans. ASME, op 639-647, Jul 1951,

11Arnberg, B. T., "Review of Critical Flowmeters fcr Gas Flow Measurements,”
J. Basic Engg » PP 447-45C, sec 136c.
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FIGURE 8. ROUNDED VS SHARP-EDGED INLET
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coefficient is typically between 0.6 and 1.0. This contraction allows the
downstream pressure to have some influence on the outflow even though the flow
is sonic, because signals can reach the sonic region by bypassing the sonic
core of the flow. Because no data were availatle on the flow of steam through
sharp-edged channels, the "nozzle" or process pipe break flow was determined
as part of the problem. The hydrocode calculations gave a discharge
coefficient of 0.77, compared with 1.00 expected for a rounded-inlet orifice,
This discharge coefficient is used in calculating the outflow from the process .
{

pipe break exit for some of the truncated flow field calculations.
F

I

|

B

f ; The steam jet reaches the end of the 50.8 mm (2.00 in) long break (process

L pipe wall thickness) before the flow has expanded to fill the entire cross-

P sectional area for the 50.8 mm break width. This result is evident in Table 3
which gives the steady-state outflow parameters, computed using CSQ, for the

i 8.3 MPa (1200 psia) process pipe reservoir conditions. The mass flux near the )

, centerline is 30% greater than the mass flux near the ‘“nozzle" wall. The i

g effect is also indicated schematically in Figure 8 for the "nozzle" with the i

o : sharp-edged inlet -- the figure indicates that the supersonic flow has not

!

expanded to encompass the entire area of the "nozzle,” Results such as given
in Table 3 will be used to avoid calculation in every computer run of the

. i
interior of the process pipe and the interior c¢f the break. i

!

!

!

f; TRUNCATED FLOW FIELD CALCULATIONS. To reduce computer time costs, the
runs with 8.3 MPa (1200 psia) process pipe reservoir conditions (Table %ﬁ
e

. Runs No, 1 - 12, 16, 17), were computed using a truncated flow field.

. calculation of the flow in the interior c¢f the process pipe (the reservoir)

&y and the interior of the break (the "nozzle") was replaced by the steady-state

4 flow conditions of Table 3 at the break outlet since the effect of the rare-

:3 faction wave moving into the reservoir was shown to be negligible in Figure 7. j

N 1
For the 12.7 mm (0.5 in) wide breaks in these runs, the fiow filled the ?

'y break exit, so the exit conditions were cbtained from analytical sonic flow
calculations over 0.77 (the discharge coefficient determined for these sharp-
edged breaks or "nozzles”) of the break area expanded to the full exit area

with the usual shock-tube area relations. The sonic conditions given in the
last line of Table 3 apply across the entire exit plane of the 12.7 mm (0.5 in)

{
|
wide breaks. :
1

4.2 PRESSURES ON GUARD PIPE WALL |
4

i

!

AIRSHOCK FORMATION BETWEEN PIPES. The exiting steam jet drives the air

between the pipes ahead of it, and forms at first a bow airshock at the nose
of the steam plume, and later an airshock that propagates ahead of the steam

jet flow in the space between the pipes.

Figure 9 presents a typical pressure distribution along the guard pipe |
inside wall showing the presence of the airshock. The airshock shown in
the figure has an overpressure of 0.5 to 1.0 MPa (5 to 10 bars) and is not
regarded as structurally significant; it is therefore handled with coarse

zoning.
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RUN 4, PROB. 7870, t = 1.00 ms

2 b
SHOCK FRONT ROUNDED
BY ARTIFICIAL VISCOSITY
- ESTIMATED TRUE
/ SHOCK FRONT
[}
STEAM-AIR l |
CONTACT SURFACE —| '
0 | { | | Yomo==F ~T
0 200 400 800 800 1000 1200

DISTANCE ALONG GUARD PIPE (mm)

FIGURE 9, PRESSURE DISTRIBUTION ALONG GUARD PIPE, INCLUDING AIR SHOCK
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In the remainder of this report, the discussion concentrates on the sharp
pressure maximum on the guard pipe inside surface facing the site of the process

pipe break.

PRESSURE TRANSIENTS ON THE GUARD PIPE WALL. Before discussing the main results,
the pressure transients due tn shock reflections between the oncoming steam jet
and the guard pipe are examined briefly. These are poorly resclved in the
two-dimensional calculations (e.g., see the oscillations in Figure 5). To
resolve these shocks, the zoning scale would have to be about an order of
magnitude finer and the computer cost for a two-dimensional calculation would
! be quite high. However, an upper bound can be obtained with a finely-zoned
one-dimensional (WUNDY code; Reference 12) Lagrangean calculation. The
simple linear shock tube geometry and the relationship with the geometry of
the real problem are shown in Figure 10. The resulting pressure-time record
at the guard pipe is shown in Figure 11. The reflected shocks are not

significant because:

1) They are very short (about 10 us) and carry lit:t'e impulse;

2) They would be reduced by the two-dimensional expansion for the real
problem geometry;

3) They would be very much reduced in amplitude by the finite opening
time of the process pipe break which is assumed to be instantaneous for these

awmmmv ,A-__,A_r’.hm_\.ﬂ_ﬂ‘_.___,. —
- .. e N .

!
:
i
i
;
g
!
!
|

" calculations. i
&4‘ The opening time of a circumferential 50.8 nm (2.00 in) treak in an 3
e, " infinite pipe with the parameters of Runs 1 through 12 is about 27 ms (Appendix '
' A}; the opening time of a longitudinal break is about 8 ms, calculated using

a clamshell-type opening model with hinging at the side opposite the break.

s LR

These long opening times mean that the steam jet that first reaches the
guard pipe originated from a small siit and would be greatly attenuated in
pressure because the distance to the guard pipe would represent many slit

widths.

These insignificant transient effects were ignored. The computational
effort was directed towards determining the steady-state pressure distributior
on tne guard pipe. The s1it (process pipe treak exit) was assumed to open
instantaneously, which allowed rapid attainment of the same steady flow that
would have been eventually reached with a slowly-opening slit.

[N

St e dete .

The steady-flow pressures reported in tke next section represent over-
estimates if the pipes are so short that the supply pressure drops before ;

steady flow is attained.

TzLehto, D. and Lutzky, M., "One-Dimensional Hydrodynamic Code for Muclear-
Explosion Calculations," MNaval Ordnance Laboratory, NCLTR 62-168, Mar 1965,
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GUARD
PROCESS PIPE PIPE WALL
AXIAL
SYMMETRY
SATURATED STEAM
AMBIENT
BREAK AIR

\

z c
50.8 50.8
fe— (2"')“1-{-—(2";"14

FIGURE 10a. GEOMETRY OF REAL PROBLEM

[ PLANE }
SYMMETRY
v
\§ GUARD
SATURATED STEAM AMBIENT N Pie
N
§ WALL
eyt

FIGURE 10b. GEOMETRY OF LINEAR SHOCK TU3E PROBLEM
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STEADY~FLOW PRESSURES ON GUARD PIPE WALL. The main results of this study
are presented in Figures 12 - 15. These figures present the steady-flow
pressure distribution on the guard pipe inside surface in the vicinity of the
process pipe break. The full distribution of computed pressure data including
the airshock effects are l1isted in corresponding Tables 4 - 6. The longitudinal- ,
break maximum pressures are greater than the corresponding circumferential-break :
maximum pressures, because the latter flow has more geometric spreading (compare :
Figures 12 and 13 and see Figure 14).

In both process pipe break configurations, the maximum pressure drops off 4
rapidly with increasing process/auard pipe separation distances. !

A check was made on how the total force on the guard pipe plus the process ‘

pipe agrees with the thrust equation for a jet of outlet area A hitting an i

unconfined plate (Reference 1), Pepeating the expression given in Chapter 2,
T/Ae = Clpo - Pr

with Cl = 1,229 (for vy = 1,1058), PO = 8,274 MPa and P+ = 0,101 MPa

gives T/A, = 1.017 x 10° dyne/cn® = 10.17 N/nl.

This can be compared with the net ocutward force on both pipes for the
parallel-plate model of the longitudinal break:

F = o -
out f gplh o/‘PppdA
gp P

For small plate separations, this integration removes most of the effect of |
the shock running between the plates, because the shock pressure distributions
are nearly identical on the two surfaces. For large plate separations, the
shock contribution does not cancel.

- —

Figure 16 shows that the calculated net forces are close to those of the
thrust equation. These integrals should not be regarded as precise, because
they depend strongly on results in the rather coarsely zoned airshock region.

k)l
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SPACE
BETWEEN
PIPES
mm (in)
) 8 L-
g
|
I»
i § 7}
- PROCESS PIPE 0.D. = 0.914 m (38 in)
r‘f 8.274 MPa (1200 PSIA) SATURATED STEAM
L = DATA ARE LISTED IN TABLE 4
. 50.8(2) 1
| GUARD PIPE TUULI 1
> SPACE 1.0, CALC.NO. RUN NO.
] mm {in} m {in)
| W
e 5 0 (0) 0814 (36) - -
2 60.8(2)  1.016 (40) T-7870 4
a 101.6(4) 1118 (44) T-7871 8
- € 1624 (6) 1220 (48) T-7872 12
I .i w
a g 41—
101.6(4)
3 .
!
2 152.4(6) f!
1 -
!
!
|
0 1 - 1 1 1 1 | i
0 20 40 80 80 100 120 140

DISTANCE ALONG GUARD PIPE (mm)

FIGURE 12. STEADY-FLOW PRESSURE ALONG GUARD PIPE FOR 50.8 mm (2 in)
CIRCUMFERENTIAL BREAK
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9 SPACE
BETWEEN
‘ PIPES
P . mm (in) ﬂ
| .
“ 8 12.7 (0.5)
. .
\4 .
o 25.4 (1)
} . PROCESS PIPE 0.D. = 0.914 m (36 in)
b ?b- 8.274 MPa (1200 PSIA) SATURATED STEAM
. : DATA ARE LISTED IN TABLE 4
b GUARD PIPE TUULI
. 50.8 (2) SPACE 1.D. CALC. NO. RUN NO,
. . mm {in) m {in}
. 6
'- 12.7(0.5) 0940 (37 T-7889 16 |
b 25.4 (1 0.966 (38) T-7888 17 b
; 50.8 (2 1.016 (40) T-7873 3
~ 3 101.6 (4 1.118 (44) T-7874 7
E £ 1524 (6) 1,220 (48) T-7875 1
| 25"
| =
i a I
V7]
@
a.
‘ 3
:‘-. ) od 4 —
- g 101.6 (4) 3
3 -
12.7(0.5) i
152.4 (6) |
2 | 1
]
{
;
1 i
z‘
€
0 1= | i 1 | [ 2
0 20 40 60 80 100 120 140

DISTANCE ALONG GUARD PIPE (mm)

FIGURE 13. STEADY-FLOW PRESSURE ALONG GUARD PIPE FOR 50.8 mm (2 in)
LONGITUDINAL BREAK
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SPACE
BETWEEN
0 PIPES

mm (in)

PROCESS PIPE 0.D. = 0.914 m (36 in)
8,274 MPa (1200 PSIA) SATURATED STEAM
DATA ARE LISTED IN TABLES

GUARD PIPE TUULI BREAK
SPACE .D. CALC.NO. RUNNO. TYPE
mm {in) m {in)
o (0) - -
T-7876 2 Cc
50.8 (2) 1,016 (40)
T-7879 1 L
T-7877 6 C
101.6 {4) 1.118 (44)
T-7880 6 L
T-7878 10 c
162.4 (8) 1,220 (48)
T-7881 9 L

L LONGITUDINAL SLIT
C CIRCUMFERENTIAL SLIT

L
_101.8(4) / /
yd

[ TBZA8] _ L O
| | 1 1 _
0 20 40 80 80 100 120
DISTANCE ALONG GUARD PIPE (mm)
FIGURE 14. STEADY-FLOW PRESSURE ALONG GUARD PIPE FOR 12.7 mm (0.6 in)

CIRCUMFERENTIAL AND LONGITUDINAL BREAKS
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Figure 17 shows the pressure distributions (indicating the presence of
the stationary shock) along the plane of symmetry passing through the center
of the longitudinal break for selected process/guard pipe separation distances.
The stationary shock (in the steam) shows the characteristic smoothing-out of
the discontinuity that is inherent in the artificial-viscosity method for
handling shock discontinuities numerically.

Some details cf the steady flow (for longitudinal-break configuration)
in Runs 7 and 11 are presented in Figures 18 and 19, respectively. These

runs differ only in the spacing between the pipes (4 and 6 inches, respectively).

The solid curves are isobars. There is a region of backflow towards the break
in both figures. The entire flow field in Figure 18 is composed of steam.
Figure 19 shows a trapped streamer of air, which conveniently delineates the
boundary of the steam jet.
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FIGURE 17. STEADY-FLOW PRESSURE DISTRIBUTION ALONG PLANE OF SYMMETRY
FOR LONGITUDINAL 60.8 (2in) BREAK

41

s, i

v

e e ALt Bt LR it 518 e bl

|
1




NSWC TR 80 - 229

RADIAL DISTANCE, R {mm)

457.2 568.8
N A i
g 2. \- _‘
. o= AN :
| 2 \ ¥
| 10 SHOCK FRONT
' 1 Y
\< Ny \ 3.0\’- i
! \ :
. \ ,3
! BLY u\
-y \\ 2.0,
- \
? bree s 4
! 3
| E
| N / ;
L i ZERO AXIAL . :
o 2 100_* VELOCITY
* [ o !
1 (7]
“p. a -% / ‘
- -l
o S
by :_ !
N /
P / 0.5
¢ 1
Y |
150 —
0.5 MPa ISOBAR
i
VELOCITY SCALE g
= PROBLEM CONTINUES | 1
1000 m/s TO Z = 1600 mm !
200 — :

FIGURE 18. FLOW PATTERN FOR PROBLEM NO. 7874 (RUN 7)
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AXIAL DISTANCE, Z (mm)
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CHAPTER 5
CONCLUSTIONS

The results in Figures 12 - 15 indicate that the steady-flow maximum
pressure loads on the guard pipe inside surface produced by ruptures
(1nngitudinal and circumferential) of the steam prccess pipe are less than
the initial process pipe steam pressure (as Bernollis' law would indiccte).
As the process/guard pipe separation distance approaches zero the pressure
loading approaches the initial process pipe steam pressure. The guard pipe
pressure loads fall off rapidly with distance from the process pipe treak
site along the guard pipe surface. Transient airshocks with high peak
pressures (and very short durations) occur before the flow becomes steady;
however, these airshocks do not transmit sufficient momentum to the guard
pipe wall to affect the guard pipe structural response appreciably. A guard
pipe designed to withstand the process pipe pressure can withstand a steam
jet from a break in the process pipe. The effect ot whipping of the process

pipe is not considered in this report.

Only simple size scaling can be accurately applied to these results
(i.e., multiplying all dimensions and time Ly the same factor). The maximum
pressure on the guard pipe depends strongly on the ratio of distance to guard
pipe divided by break width, and weakly on the ratio ¢f break length (i.e.,
pipe thickness) to break width and on the equation of state for steam.
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APPENDIX A
OPENING TIME OF CIRCUMFERENTIAL BREAK IN PROCESS PIPE

Assume that the break occurs instantaneously and calculate how long it
takes for the ends to pull apart to the desired break size. The mechanism
for pulling the ends apart is a relief wave that propagates along the pipe
and drops the meridional stress from its loaded condition to zero stress.
The meridional stress is

o = g—% 36.20 MPa = 5250 psi

where p = pressure in pipe (=8.274 MPa = 1200 psia)
R = radius of pipe (=0.44%m = 17.5 in)
t = thickness of pipe (=50.8 mm = 2 in)

The speed of a longitudinal wave in an infinite plate is (Reference Al - p. 81)

c = ._EL.?- = 5,24 x 103 m/s

p(1-v")
Young's modulus (=2.0 x 105 MPa for steel (Reference A2 - p. 2-68))

where [
v = Poisson's ratio (=0.3)

p = density (8 x 103 kg/m3)

The speed of the pipe (particle velocity) in the stress-relieved region is

v = (%> c = 0.948 w/s

Alyorsky, Ho, Stress Waves in Solids, Dover, New York, 1963.

AzGray. D. E. (ed.), American Institute of Physics Handbook, 3rd ed., McGraw-Hil1l,
19720
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To open a 50.8 mm (2 in) break, each end has to move 25.4 mm (1 in). The ?
time this takes 1is i

t (26,6 mm=11n) = (25.4 mm) / (0.948 x 10° mm/s) = 26.8 ms

- In this time, the elastic relief wave has moved down the pipe a distance of
\ (0.0268 s) x (5.24 x 105 m/s) = 140 m. Anything within 70 m that inhibits
; Tongitudinal motion of the pipe would send back a wave that would slow the

opening of the gap before it reached a total size of 50.8 mm (2 in).
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